Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2402379, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38655900

RESUMO

Circulating tumor cells (CTCs) detection presents significant advantages in diagnosing liver cancer due to its non-invasiveness, real-time monitoring, and dynamic tracking. However, the clinical application of CTCs-based diagnosis is largely limited by the challenges of capturing low-abundance CTCs within a complex blood environment while ensuring them alive. Here we design an ultra-strong ligand, L-histidine-L-histidine (HH), specifically targeting sialylated glycans on the surface of CTCs. Further HH is integrated into a cell-imprinted polymer, constructing a hydrogel with precise CTCs imprinting, high elasticity, satisfactory blood-compatibility, and robust anti-interference capacities. These features endow the hydrogel with excellent capture efficiency (>95%) for CTCs in peripheral blood, as well as the ability to release CTCs controllably and alive. Clinical tests substantiate the accurate differentiation between liver cancer, cirrhosis, and healthy groups using this method. The remarkable diagnostic accuracy (94%), lossless release of CTCs, material reversibility, and cost-effectiveness (6.68 dollars per sample) make the HH-based hydrogel a potentially revolutionary technology for liver cancer diagnosis and single-cell analysis. This article is protected by copyright. All rights reserved.

2.
J Mater Chem B ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602378

RESUMO

Mass spectrometry (MS)-based proteomics can identify and quantify the differential abundance of expressed proteins in parallel, and bottom-up proteomic approaches are even approaching comprehensive coverage of the complex eukaryotic proteome. Protein-nanoparticle (NP) interactions have been extensively studied owing to their importance in biological applications and nanotoxicology. However, the proteome-level effects of NPs on cells have received little attention, although changes in protein abundance can reflect the direct effects of nanocarriers on protein expression. Herein, we investigated the effect of PLGA-based NPs on protein expression in HepG2 cells using a label-free quantitative proteomics approach with data independent acquisition (DIA). The percentage of two-fold change in the protein expression of cells treated with PLGA-based NPs was less than 10.15% during a 6 hour observation period. Among the changed proteins, we found that dynamic proteins involved in cell division, localization, and transport are more likely to be more susceptible to PLGA-based NPs.

3.
Biotechnol J ; 19(4): e2300710, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38581096

RESUMO

Reconstruction and optimization of biosynthetic pathways can help to overproduce target chemicals in microbial cell factories based on genetic engineering. However, the perturbation of biosynthetic pathways on cellular metabolism is not well investigated and profiling the engineered microbes remains challenging. The rapid development of omics tools has the potential to characterize the engineered microbial cell factory. Here, we performed label-free quantitative proteomic analysis and metabolomic analysis of engineered sabinene overproducing Saccharomyces cerevisiae strains. Combined metabolic analysis andproteomic analysis of targeted mevalonate (MVA) pathway showed that co-ordination of cytosolic and mitochondrial pathways had balanced metabolism, and genome integration of biosynthetic genes had higher sabinene production with less MVA enzymes. Furthermore, comparative proteomic analysis showed that compartmentalized mitochondria pathway had perturbation on central cellular metabolism. This study provided an omics analysis example for characterizing engineered cell factory, which can guide future regulation of the cellular metabolism and maintaining optimal protein expression levels for the synthesis of target products.


Assuntos
Monoterpenos Bicíclicos , Engenharia Metabólica , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteômica , Mitocôndrias/genética , Mitocôndrias/metabolismo
4.
Chem Sci ; 14(46): 13495-13502, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38033888

RESUMO

Single-cell multi-omics analysis can provide comprehensive insights to study cell-to-cell heterogeneity in normal and disease physiology. However, due to the lack of amplification technique, the measurement of proteome and metabolome in the same cell is challenging. Herein, a novel on-capillary alkylation micro-reactor (OCAM) was developed to achieve proteo-metabolome profiling in the same single cells, by which proteins were first covalently bound to an iodoacetic acid functionalized open-tubular capillary micro-reactor via sulfhydryl alkylation reaction, and metabolites were rapidly eluted, followed by on-column digestion of captured proteins. Compared with existing methods for low-input proteome sample preparation, OCAM exhibited improved efficiency, anti-interference ability and recovery, enabling the identification of an average of 1509 protein groups in single HeLa cells. This strategy was applied to single-cell proteo-metabolome analysis of mouse oocytes at different stages, 3457 protein groups and 171 metabolites were identified in single oocytes, which is the deepest coverage of proteome and metabolome from single mouse oocytes to date, achieving complementary characterization of metabolic patterns during oocyte maturation.

5.
Nat Commun ; 14(1): 3882, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37391416

RESUMO

Current methods for intracellular protein analysis mostly require the separation of specific organelles or changes to the intracellular environment. However, the functions of proteins are determined by their native microenvironment as they usually form complexes with ions, nucleic acids, and other proteins. Here, we show a method for in situ cross-linking and analysis of mitochondrial proteins in living cells. By using the poly(lactic-co-glycolic acid) (PLGA) nanoparticles functionalized with dimethyldioctadecylammonium bromide (DDAB) to deliver protein cross-linkers into mitochondria, we subsequently analyze the cross-linked proteins using mass spectrometry. With this method, we identify a total of 74 pairs of protein-protein interactions that do not exist in the STRING database. Interestingly, our data on mitochondrial respiratory chain proteins ( ~ 94%) are also consistent with the experimental or predicted structural analysis of these proteins. Thus, we provide a promising technology platform for in situ defining protein analysis in cellular organelles under their native microenvironment.


Assuntos
Mitocôndrias , Membranas Mitocondriais , Conformação Proteica , Bases de Dados Factuais , Glicóis
6.
Anal Chem ; 95(25): 9555-9563, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37322814

RESUMO

Photosynthesis, as the core of solar energy biotransformation, is driven by photosynthetic membrane protein complexes in plants and algae. Current methods for intracellular photosynthetic membrane protein complex analysis mostly require the separation of specific chloroplasts or the change of the intracellular environment, which causes the missing of real-time and on-site information. Thus, we explored a method for in vivo crosslinking and mapping of photosynthetic membrane protein complexes in the chloroplasts of living Chlamydomonas reinhardtii (C. reinhardtii) cells under cultural conditions. Poly(lactic-co-glycolic acid) (PLGA) and poly(lactic-co-glycolic acid)-poly(ethylene glycol) (PLGA-PEG) nanoparticles were fabricated to deliver bis(succinimidyl)propargyl with a nitro compound (BSPNO) into the chloroplasts to crosslink photosynthetic membrane protein complexes. After the in vivo crosslinked protein complexes were extracted and digested, mass spectrometry was employed to detect lysine-specific crosslinked peptides for further elucidating the protein conformations and interactions. With this method, the weak interactions between extrinsic proteins in the luminal side (PsbL and PsbH) and the core subunits (CP47 and CP43) in photosynthetic protein complexes were directly captured in living cells. Additionally, the previously uncharacterized protein (Cre07.g335700) was bound to the light-harvesting proteins, which was related to the biosynthesis of light-harvesting antennae. These results indicated that in vivo analysis of photosynthetic protein complexes based on crosslinker nanocarriers was expected to not only figure out the difficulty in the study of photosynthetic protein complexes in living cells but also provide an approach to explore transient and weak interactions and the function of uncharacterized proteins.


Assuntos
Chlamydomonas reinhardtii , Complexo de Proteínas do Centro de Reação Fotossintética , Complexo de Proteínas do Centro de Reação Fotossintética/química , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Chlamydomonas reinhardtii/metabolismo , Proteínas de Membrana/metabolismo , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Complexos de Proteínas Captadores de Luz/metabolismo , Cloroplastos
7.
Anal Chem ; 95(23): 8752-8757, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37246519

RESUMO

The outbreak of coronavirus disease 2019 (COVID-19) has overwhelmed the global economy and human well-being. On account of the sharp increase in test demand, there is a need for an accurate and alternative diagnosis method for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this study, with the aim to specifically identify the trace SARS-CoV-2 S1 glycoprotein, we developed a high-sensitivity and high-selectivity diagnostic method based on the targeted parallel reaction monitoring (PRM) assay of eight selected peptides. This study emphasizes the outstanding detection sensitivity of 0.01 pg of the SARS-CoV-2 S1 glycoprotein even in the interference of other structural proteins, which to our knowledge is the current minimum limit of detection for the SARS-CoV-2 S1 glycoprotein. This technology could further identify 0.01 pg of the SARS-CoV-2 S1 glycoprotein in a spike pseudovirus, revealing its practical effectiveness. All our preliminary results throw light on the capability of the mass spectrometry-based targeted PRM assay to identify SARS-CoV-2 as a practicable orthogonal diagnostic tool. Furthermore, this technology could be extended to other pathogens (e.g., MERS-CoV S1 protein or SARS-CoV S1 protein) by quickly adjusting the targeted peptides of MS data acquisition. In summary, this strategy is universal and flexible and could be quickly adjusted to detect and discriminate different mutants and pathogens.


Assuntos
COVID-19 , Coronavírus da Síndrome Respiratória do Oriente Médio , Humanos , SARS-CoV-2 , Glicoproteínas , Espectrometria de Massas
8.
Adv Mater ; 35(33): e2302560, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37247257

RESUMO

Lipopolysaccharide (LPS) is the primary bacterial toxin that is vital to the pathogenesis and progression of sepsis associated with extremely high morbidity and mortality worldwide. However, specific clearance of LPS from circulating blood is highly challenging because of the structural complexity and its variation between/within bacterial species. Herein, a robust strategy based on phage display screening and hemocompatible peptide bottlebrush polymer design for specific clearance of targeted LPS from circulating blood is proposed. Using LPS extracted from Escherichia coli as an example, a novel peptide (HWKAVNWLKPWT) with high affinity (KD < 1.0 nм), specificity, and neutralization activity (95.9 ± 0.1%) against the targeted LPS is discovered via iterative affinity selection coupled with endotoxin detoxification screening. A hemocompatible bottlebrush polymer bearing the short peptide [poly(PEGMEA-co-PEP-1)] exhibits high LPS selectivity to reduce circulating LPS level from 2.63 ± 0.01 to 0.78 ± 0.05 EU mL-1 in sepsis rabbits via extracorporeal hemoperfusion (LPS clearance ratio > 70%), reversing the LPS-induced leukocytopenia and multiple organ damages significantly. This work provides a universal paradigm for developing a highly selective hemoadsorbent library fully covering the LPS family, which is promising to create a new era of precision medicine in sepsis therapy.


Assuntos
Lipopolissacarídeos , Sepse , Animais , Coelhos , Endotoxinas , Sepse/terapia , Peptídeos , Bactérias
9.
Acta Biomater ; 158: 673-685, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36632878

RESUMO

Relatively low catalytic activity and poor targeting limit the applications of nanoceria (CeO2) nanozymes in the treatment of tumors. Here, we designed a unique pushpin-like Au/CeO2 hybrid nanozyme with high catalytic activity by combining site-selective growth and steric restriction strategies. The enhanced enzyme activity was attributed to plasmon-induced hot electrons. Furthermore, the pushpin-like structure facilitated targeting molecule modification. The nanozyme exhibited superior antitumor effects both in vitro and in vivo due to its high catalytic activity and targeting effects. Importantly, its potential mechanism of anti-tumor therapy was studied by quantitative proteomics. The reactive oxygen species (ROS) generated by folic acid-PEG thiol-Au/CeO2 (FA-Au/CeO2) caused mitochondrial and proteasomal damage in tumor cells and further evoked a response to oxidative stress and innate immunity in vivo. This study provided a spatiotemporal approach to enhance the antitumor activity of nanozymes by structural design. The designed pushpin-like Au/CeO2 could be utilized as a multifunctional nanoplatform for in vitro and in vivo plasmon-enhanced cancer therapy with active targeting effects. Moreover, this study systematically explored the anti-tumor mechanism of the nanozyme in both cell and mouse models, promoting its translation to the clinic. STATEMENT OF SIGNIFICANCE: A strategy combining the principles of site-selective growth and steric restriction was developed to prepare a unique pushpin-like Au/CeO2 hybrid nanozyme with high catalytic activity and low steric hindrance. The hybrid nanozyme showed superior antitumor activity at both the cellular and tissue levels. Furthermore, the antitumor mechanism was investigated in terms of the differential proteins and their pathways using quantitative proteomics, thus promoting the translation of nanozymes to the clinic.


Assuntos
Neoplasias , Animais , Camundongos , Neoplasias/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Catálise
11.
Se Pu ; 40(9): 773-781, 2022 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-36156623

RESUMO

The rapid global spread of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has introduced various challenges in global public health systems. The poor applicability and sensitivity of the reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and antigen-based tests, as well as the persistent emergence of SARS-CoV-2 variants with different mutations hinder satisfactory epidemic prevention and control. Therefore, there is an urgent need for diagnostic technologies capable of distinguishing SARS-CoV-2 variants with high sensitivity and low (or no) equipment dependence. Diagnosis based on clustered regularly interspaced short palindromic repeats (CRISPR) has low equipment requirements and is programmable, sensitive, and easy to use. Various nucleic acid detection tools with great clinical potential have been developed for the diagnosis of infectious diseases. Therefore, this review focuses on the reported state-of-the-art CRISPR diagnostic technologies developed for the detection and differentiation of SARS-CoV-2 variants, summarizes their characteristics and provides an outlook for their development.


Assuntos
COVID-19 , Ácidos Nucleicos , COVID-19/diagnóstico , Sistemas CRISPR-Cas , Humanos , Técnicas de Amplificação de Ácido Nucleico , SARS-CoV-2/genética
12.
J Mater Chem B ; 10(35): 6655-6663, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35579220

RESUMO

Exosomes are extracellular vesicles with unique size distribution derived from the parent cells. They are involved in intercellular communication and transport, and are also biomarkers for early diagnosis and prognosis of disease. However, the isolation and characterization of exosomes face the challenges of large sample requirements and low enrichment efficiency of traditional methods. Herein, a simple method is proposed for the preparation of an artificial antibody that has a synergistic effect by featuring nanocavities obtained by dull template imprinting and molecular recognition conferred by electrostatic interaction. With this artificial antibody, highly efficient capture and proteome analysis of exosomes from urine and cell culture media are achieved: for urine, the abundance of Top100 exosomal proteins enriched by this artificial antibody increased from 1.85% to 9.66%. For the cell culture medium, the abundance of the Top100 proteins enriched by this artificial antibody was 28.4%. Moreover, this artificial antibody has a comparable effect to the commercial precipitation-based method in capturing exosomes and has advantages in removing contaminants such as prothymosin alpha (PTMA), demonstrating the superior selectivity of the artificial antibody. Overall, this artificial antibody holds promise to capture exosomes from biofluids and is compatible with subsequent proteome analysis.


Assuntos
Exossomos , Anticorpos , Biomarcadores/metabolismo , Exossomos/metabolismo , Proteoma/metabolismo , Tecnologia
13.
Anal Chem ; 94(2): 758-767, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34932315

RESUMO

Limited by the rare efficient extraction system in extracting hydrophobic membrane protein complexes (MPCs) without compromising the stability of protein-protein interactions (PPIs), the in-depth functional study of MPCs has lagged far behind. In this study, the first systematic screening of ionic liquids (ILs) was performed and showed that triethylammonium acetate (TEAA) IL exhibited excellent performance in stabilizing PPIs, which was further confirmed by molecular docking simulations. By combining TEAA with the conventional detergent Nonidet P-40 (NP-40), a novel IL-based extraction system, i-TAN (TEAA IL with 1% NP-40), was proposed, which demonstrated superior performance in extracting and stabilizing MPCs, attributed to its larger size, more uniform distribution, and closer-to-neutral microenvironment of micelles. Extraction of MPCs with i-TAN allowed the confident identification of more hydrophobic EGFR-interacting proteins that are easily dissociated during the extraction process. Quantitative analysis of the difference in EGFR complexes between trastuzumab-sensitive and trastuzumab-resistant breast cancer cells provided comprehensive insights to understand the drug resistance mechanism, suggesting that i-TAN has great potential in interactomics and functional analysis of MPCs. This study provides a novel strategy for MPC extraction and downstream processing.


Assuntos
Líquidos Iônicos , Líquidos Iônicos/química , Proteínas de Membrana , Simulação de Acoplamento Molecular
14.
Sci China Life Sci ; 65(5): 851-860, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34970711

RESUMO

Yeast artificial chromosomes (YACs) are important tools for sequencing, gene cloning, and transferring large quantities of genetic information. However, the structure and activity of YAC chromatin, as well as the unintended impacts of introducing foreign DNA sequences on DNA-associated biochemical events, have not been widely explored. Here, we showed that abundant genetic elements like TATA box and transcription factor-binding motifs occurred unintentionally in a previously reported data-carrying chromosome (dChr). In addition, we used state-of-the-art sequencing technologies to comprehensively profile the genetic, epigenetic, transcriptional, and proteomic characteristics of the exogenous dChr. We found that the data-carrying DNA formed active chromatin with high chromatin accessibility and H3K4 tri-methylation levels. The dChr also displayed highly pervasive transcriptional ability and transcribed hundreds of noncoding RNAs. The results demonstrated that exogenous artificial chromosomes formed chromatin structures and did not remain as naked or loose plasmids. A better understanding of the YAC chromatin nature will improve our ability to design better data-storage chromosomes.


Assuntos
Proteômica , Saccharomyces cerevisiae , Cromatina/genética , Cromossomos Artificiais de Levedura , DNA/genética , Saccharomyces cerevisiae/genética
15.
Anal Chem ; 93(50): 16835-16844, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34889606

RESUMO

Extracellular vesicles (EVs) contain specific biomarkers for disease diagnosis. Current EV isolation methods are hampered in important biological applications due to their low recovery and purity. Herein, we first present a novel EV negative isolation strategy based on surface nanosieving polyether sulfone particles with graphene oxide encapsulation (SNAPs) by which the coexisting proteins are irreversibly adsorbed by graphene oxide (GO) inside the particles, while EVs with large sizes are excluded from the outside due to the well-defined surface pore sizes (10-40 nm). By this method, the purity of the isolated EVs from urine could be achieved 4.91 ± 1.01e10 particles/µg, 40.9-234 times higher than those obtained by the ultracentrifugation (UC), size-exclusion chromatography (SEC), and PEG-based precipitation. In addition, recovery ranging from 90.4 to 93.8% could be obtained with excellent reproducibility (RSD < 6%). This was 1.8-4.3 times higher than those obtained via SEC and UC, comparable to that obtained by PEG-based precipitation. Taking advantage of this strategy, we further isolated urinary EVs from IgA nephropathy (IgAN) patients and healthy donors for comparative proteome analysis, by which significantly regulated EV proteins were found to distinguish IgAN patients from healthy donors. All of the results indicated that our strategy would provide a new avenue for highly efficient EV isolation to enable many important clinical applications.


Assuntos
Vesículas Extracelulares , Sulfonas , Grafite , Humanos , Polímeros , Reprodutibilidade dos Testes
16.
Se Pu ; 39(2): 118-124, 2021 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-34227343

RESUMO

Nanocarriers are nanoscale delivery systems composed of natural or synthetic polymers, which are advantageous in reducing drug toxicity while improving drug targeting and utilization. With the advancement of biomedical technology, it is revealed that reactive oxygen species (ROS), a class of oxidative metabolites, show abnormal overexpression in disease-related parts of the body. Hence, ROS stimuli-responsive nanocarriers have gained increasing attention, and recent developments are expected to realize controllable drug release. Based on linkers with different ROS-responsive mechanisms, a series of ROS-responsive nanocarriers have been designed to achieve specific controlled drug release under the stimulation of the ROS at the disease site. This article mainly focuses on ROS-responsive linkers, which have been commonly used for the synthesis of nanocarriers in recent years. Accordingly, the linkers are classified as chalcogen-containing responsive linkers (thioether, thioketal, selenide, diselenide, and telluride) and responsive linkers containing other elements (arylboronic ester, ferrocene, and peroxalate ester). ROS stimuli-responsive nanocarriers are fabricated by introducing ROS-responsive linkers in different design principles. Owing to the ROS-responsive linkers, the nanocarriers follow different responsive mechanisms, including hydrophobic-to-hydrophilic phase transition and cleavage. This article discusses the degree of responsiveness of nanocarri-ers and the specific release of drugs from nanocarriers upon ROS-stimuli, as well as their applications in vivo. In particular, on the basis of intelligent drug release and precision medicine, this article also emphasizes the importance of the biocompatibility and biodegradability of nanocarriers.


Assuntos
Portadores de Fármacos/química , Liberação Controlada de Fármacos , Nanopartículas/química , Espécies Reativas de Oxigênio/química , Polímeros
17.
Anal Methods ; 13(4): 469-476, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33458731

RESUMO

Estrogen exposure has already been considered to be associated with tumorigenesis and breast cancer progression. To study the epigenetic regulation mechanism in MCF-7 cells under estrogen exposure, which normally results in cell proliferation and malignancy, a stable isotope labeling of amino acid (SILAC) based quantitative proteomics strategy was used to analyse histone post-translational modifications (PTMs) and protein differential expressions. In total, we have unambiguously identified 49 histone variants and quantified 42 of them, in which two differentially expressed proteins were found to be associated with breast cancers. Through the quantitative analysis of 470 histone peptides with a combination of different PTM types, including methylation (mono-, di-, and tri-), acetylation and phosphorylation, 150 of them were found to be differentially expressed. Through the biological analysis of the quantification results of both histone PTMs and proteins in MCF-7 cells, we found that (1) the histone variants H10 and H2AV have an effect on the adjustment of the nucleosome or chromatin structure and activate target genes; (2) after estrogen receptor (ER) activation by estrogen, the recruitment of histone acetyltransferase KAT7 might affect the acetylation at the N terminal of H4 (K5, K8 and K12) and also result in cross-talk between different acetylation sites; (3) different expression of histone deacetylase HDAC2 and its nucleo-cytoplasmic transportation process is important in the regulation of histone acetylation in MCF-7 cells under estrogen exposure.


Assuntos
Código das Histonas , Proteômica , Epigênese Genética , Estradiol/farmacologia , Estrogênios/farmacologia , Histona Acetiltransferases , Humanos , Células MCF-7 , Processamento de Proteína Pós-Traducional
18.
Talanta ; 215: 120931, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32312467

RESUMO

Urinary proteome, as an important component of body fluid proteome, could reflect kidney, urogenital tract function and pathological changes of human organs. This study reports a convenient strategy for urine proteome analysis through ampholine immobilized polymer microsphere (ampholine@PM) fractionation strategy. After ampholine@PM treatment, 16,543 unique peptides corresponding to 2173 non-redundant urinary proteins were identified, while only 856 proteins, corresponding to 3524 peptides were identified in the crude urine sample. The number of proteins and peptides was increased by 1.54 and 3.69 times, respectively. 31 urinary candidate biomarkers have also been identified (17 candidate biomarkers of glomerular injury and 14 candidate biomarkers of tubular injury), showing the potential of our strategy in urinary biomarker discovery study. In additional to the urine proteome, N-glycoproteome analysis was also performed after ampholine@PM fractionation followed by the N-glycopeptides enrichment. The number was increased from 144 to 281 for N-glycoproteins, 261 to 709 for N-glycopeptides, and 226 to 493 for N-glycosylation sites, after ampholine@PM treatment. Based on the significant increase on the identified N-glycoprotein number, ampholine@PM fractionation strategy also offered a beneficial tool for the post translational modification analysis of urine proteome.


Assuntos
Glicopeptídeos/urina , Glicoproteínas/urina , Microesferas , Polímeros/química , Proteoma/análise , Humanos , Estrutura Molecular , Poliaminas/química
19.
Small ; 16(7): e1904199, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31971662

RESUMO

The selective and highly efficient capture of circulating tumor cells (CTCs) from blood and their subsequent release without damage are very important for the early diagnosis of tumors and for understanding the mechanism of metastasis. Herein, a universal strategy is proposed for the fabrication of an antibody-free hydrogel that has a synergistic effect by featuring microinterfaces obtained by cell imprinting and molecular recognition conferred by boronate affinity. With this artificial antibody, highly efficient capture of human hepatocarcinoma SMMC-7721 cells is achieved: as many as 90.3 ± 1.4% (n = 3) cells are captured when 1 × 105 SMMC-7721 cells are incubated on a 4.5 cm2 hydrogel, and 99% of these captured cells are subsequently released without any loss of proliferation ability. In the presence of 1000 times as many nontarget cells, namely, leukaemia Jurkat cells, the SMMC-7721 cells can be captured with an enrichment factor as high as 13.5 ± 3.2 (n = 3), demonstrating the superior selectivity of the artificial antibody for the capture of the targeted CTCs. Most importantly, the SMMC-7721 cells can be successfully captured even when spiked into whole blood, indicating the great promise of this approach for the further molecular characterization of CTCs.


Assuntos
Separação Celular , Técnicas e Procedimentos Diagnósticos , Hidrogéis , Neoplasias , Células Neoplásicas Circulantes , Contagem de Células , Linhagem Celular Tumoral , Separação Celular/métodos , Humanos , Hidrogéis/química , Neoplasias/diagnóstico
20.
Anal Chem ; 92(1): 567-572, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31846294

RESUMO

Protein N-termini and their modifications not only represent different protein isoforms but also relate to the functional annotation and proteolytic activities. Currently, negative selection methods, such as terminal amine isotopic labeling of substrates (TAILS), are the most popular strategy to analyze the protein N-terminome, in which dimethylation or acetylation modification is commonly used to block the free amines of proteome samples. However, after tryptic digestion, the generated long peptides, caused by the missing cleavage of blocked lysine, could hardly be identified by MS, which hindered the deep-coverage analysis of N-terminome. Herein, to solve this problem, we developed an approach, named terminal amine guanidination of substrates (TAGS). 1H-Pyrazole-1-carboxamidine was used to effectively guanidinate lysine ε-amines and N-terminal α-amines, followed by tryptic digestion to generate N-terminal peptides without free amines and internal peptides with free amines. Then, the internal peptides with free amines were removed by hyperbranched polyglycerol-aldehyde polymers (HPG-ALDs) to achieve the negative enrichment of N-terminome. By TAGS, not only the cleavage rate of blocked lysine could be improved, but also the ionization efficiency of tryptic peptides was increased. In comparison, 1814 and 1620 protein N-termini were, respectively, identified by TAGS and TAILS in Saccharomyces cerevisiae (S. cerevisiae). Among them, 1012 N-termini were uniquely identified in TAGS. Furthermore, by the combination of TAGS and the stable isotope labeling with amino acids in cell culture (SILAC)/label-free quantitative method, we not only identified the known N-terminal cleavage fragment of gasdermin D but also identified some new cleavage sites during Val-boroPro-induced pyroptosis. All these results demonstrated that our developed approach, TAGS, might be of great promise for the comprehensive analysis of N-terminome and beneficial for promoting the identification of protein isoforms and studying in-depth the proteolytic activity of proteins.


Assuntos
Aminas/análise , Proteínas de Saccharomyces cerevisiae/química , Cromatografia Líquida , Saccharomyces cerevisiae/química , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...